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Abstract--Three-dimensional thermocapillary convection of a Boussinesq fluid in an open cubic container 
is considered in the absence of buoyancy. The steady motion is computed with a modified Full-Approxi- 
mation Scheme, Full Multi-Grid (FAS-FMG) method based on a finite difference, primitive variable 
formulatioE.. Solutions on a staggered grid of 32 x 32 x 32 points for each unknown are obtained by a line 
coupled, block implicit relaxation method for the Navier-Stokes equation, and an alternating zebra- 
relaxation method for the energy equation. Three-dimensional (3D) flow structures and temperature fields 
are presented for Reynolds numbers up to 5 x 104 and Prandtl numbers Pr = 0.01, 1, 10 and 50. Apart 
from the m~.in vortex known from 2D calculations pronounced secondary vortices appear. The mechanisms 

driving; this secondary flow are discussed in terms of well-known properties of the main vortex. 

1. INTRODUCTION 

Thermocapillary convection can be an important 
natural transport mechanism in hydrodynamic sys- 
tems that involve at least two immiscible fluids. If 
surface tension variations arise due to, e.g. tem- 
perature gradients along the interface (ther- 
mocapillary effect), then shear stresses acting on the 
interface induce fluid motions on either side of the 
boundary. Because of the relatively low viscosity of 
gases, the gas flow in liquid-gas systems can be neg- 
lected and the interface is considered a ther- 
mocapillary free surface. For most liquid-gas systems 
dtr0/dT< 0 and 'Lhe thermocapillary surface force 
(and usually also the flow) is directed from hot to cold 
areas of the liquid. Examples are the melt motion in 
a weld bath [1] or the flow in the Czochralski crystal- 
growth process [12]. Under terrestrial gravity con- 
ditions thermocapillary convection is generally domi- 
nated by buoyant convection. Since the ratio between 
thermocapillary forces and buoyancy forces scales like 
d-2, where d is the characteristic length over which 
the surface tension varies, buoyancy effects play a 
minor role in small size systems with aspect ratios of 
order O(1). Carpenter and Homsy [3], however, have 
shown that therrnocapillary convection will also be 
dominant in even larger systems, if the temperature 
gradient is sufficiently increased. 

For that reason it is interesting to study ther- 
mocapillary convection both as a basic surface force 
driven flow systera and for its practical importance. 

t Author to whom correspondence should be addressed. 

Because of the simple geometry the flow in open cavi- 
ties, in which the free surface is assumed to be non- 
deformable, has received much attention during the 
past years. Graziani et al. [4] developed a 2D station- 
ary code for small thermocapillary Reynolds numbers 
(Re < 200). This code was improved by Strani et al. 

[5], who simulated flows up to Re = 3000. Both 
methods used a stream function formulation. Zebib 
et al. [6] introduced a stationary 2D finite difference 
method in primitive variable formulation. For Pr = 1 

this method is convergent for Reynolds numbers up 
to 104. In a following paper, Carpenter and Homsy 
[3] simulated the flow up to Reynolds numbers of 
1.9 × 105 using a combination of Newton and chord 
steps for the iterative solution of the problem. More- 
over, the dependence of the convection structure on 
the Prandtl number was examined and the analogy to 
the lid driven cavity flow [7] was discussed. Three- 
dimensional calculations have been reported by Babu 
and Korpela [8] and Hsieh [9]. Babu and Korpela's 
calculations were limited to small Reynolds numbers 
up to Re = 300. They demonstrated the existence of 
secondary flows, which were induced by surface tem- 
perature gradients perpendicular to the main tem- 
perature gradient applied externally. Hsieh [9] com- 
puted the flow for Pr = 100 and Re _~ 400 by a dual- 
time stepping method for a deformable surface. The 
surface deformation was shown to be less than 0.01% 
of the container linear dimension. 

In the present study we investigate steady 3D ther- 
mocapillary convection without buoyant convection 
in a cube and pay special attention to those 3D effects 
that are induced by the presence of sidewalls. 
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NOMENCLATURE 

Ca = 7To/ao capillary number  
d distance between the heated walls 
h, H distance between grid points on the 

fine/coarse grid 
Ll, FI difference operator and boundary  

values refering to the N-S-system 
L2, F2 difference operator and boundary  

values refering to the energy 
equation 

Ma = Pr Re Marangoni  number  
p pressure 
Pr = v/x Prandtl  number  
Re = dyTo/pV Reynolds number  
T temperature 
TR boundary  values of T on the free 

surface 

To temperature difference between the 
heated walls 

U = (u, v, w) ~ velocity vector. 

Greek symbols 
y = dao/dT surface tension 

coefficient 
x thermal diffusivity 
# dynamic viscosity 
v kinematic viscosity 
a surface tension 
a0 surface tension at the reference 

temperature 
l] bounded domain 
f~L bounded discrete domain. 

free surface 

hot ~ F ~  cold 

Fig. 1. Cubic cavity with open top and heated walls (hatched) 
and coordinate system. 

2. MATHEMATICAL MODEL 

We consider an open-top cubic box shown in Fig. 
1 of side length d containing a Boussinesq liquid. The 
side walls of the box at x = 0, d are kept at constant 
temperatures of T = _+ To~2 relative to an arbitrary 
reference temperature. In non-dimensional  form the 
stationary flow is governed by the Navier-Stokes 
equations (1,2) and the energy equation (3) inside the 
domain f~ = (0, 1) x (0, 1) x (0, 1) 

Re(U" V)U = - Vp + AU (1) 

V- U = 0 (2) 

Ma(U'V) T = AT. (3) 

Length, velocity, temperature and pressure have been 
made dimensionless by the scales d, yTo/#, To and 
7To~d, respectively. The Reynolds and the associated 
Marangoni  number  are defined as 

d~T0 
R e = - -  and Ma=PrRe 

#v 

with Prandtl  number  Pr = v/x. The problem is com- 
pleted by appropriate boundary conditions. At the 
rigid walls no-slip and no-penetration boundary  con- 
ditions are imposed for the velocity U ----- (u, v, w), 

In the 

u = v = w = O  on x = O ,  1 

u = v = w = O  on y = 0  

u = v = w = O  on z = 0 , 1 .  (4) 

limit of vanishing capillary number  
Ca = ?T0/a0 ~ 0 surface deformations cannot  occur 
(Ca is usually small in experiments, see Hsieh [9] or 
Kamotani  et al. [10]), so that the kinematic condit ion 
at the free surface is 

v = 0  on y = l .  (5) 

The balance of forces on the free surface shows that 
the shear stresses must be compensated by ther- 
mocapillary forces. For  Ca = 0 the boundary  con- 
ditions are simplified to 

du 3T 
on y = 1 (6) 

8y Ox 

~w OT 
= - - -  on y = l .  (7) 

~3y Oz 

Since the side walls of the box at x = O, 1 are heated 
and all other walls are considered adiabatic, we 
impose 

T = I  on x = 0  (8) 

T = 0  on x = l  (9) 

and 
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t3T 
- - = 0  on y = 0 , 1  (10) c~y 

~T 
0 - ~ = 0  on z = 0 , 1 .  (11) 

Note, that no heat transfer is allowed between the 
liquid and the gas at y = 1 [equation (10)]. 

3. NUMERICAL METHOD 

To solve the problem formulated in the previous 
section we employ a Multi-Grid method. During the 
course of the computation, the solution is approxi- 
mated on grids with different mesh sizes. This pro- 
cedure involves interpolations of the field variables 
between different grids and relaxations on each grid. 
We follow Bruneau and Jouron [11] in solving this 
problem by using a simplification of the FAS-FMG 
algorithm, which essentially consists of doing a fixed 
number NBUP = 2 of fine grid iterations, 
N B D O W N =  1 of coarse grid iterations, and 
NB1 = 5 iterations on the coarsest grid (we use the 
same notation as [11]). 

One complete iteration cycle is split in two parts. 
In a first step, U and p are calculated. To solve the 
corresponding equations the temperature distribution 
entering in the boundary conditions (6, 7) as well 
as U. V are approximated by values obtained in the 
previous iteration step. The linearization of the non- 
linear term is sometimes called the method o f  frozen- 
coefficients. Having determined U and p in this 
manner, the energy equation can be solved without 
difficulties. 

The energy equation is relaxated after the relaxation 
of the NS equatiolas (1) and (2). The discrete versions 
of (1)-(3) at the nth iteration can be written as 

1. step: Ll(U<n),p('°,U("-°,p (n-l), T~ -l)) = F1 

(12) 

2. step: L2(U ~"), T ("), T ("-l)) = F2 (13) 

where L~ denotes lhe finite difference operators and F~ 
denotes the boundary values (except for TR) for the 
NS equations (i = 1) and the energy equation (i -- 2). 
TR is the temperature distribution on the ther- 
mocapillary surface at y = 1. 

The iterations are carried out on a staggered grid 
[12] with the pressure p given at the center (i,j, k) of a 
unit cell, the wflocity components u(i+_l/2,j,k), 
v(i,j+_l/2,k),  w(i,~Lk+_l/2), and the temperature 
T(i+. 1/2,j, k-t- 1/2). The velocities and the pressure in 
the unit cell are calculated simultaneously. We use a 
line-implicit method allowing us to calculate pressure 
gradients in line-direction implicitely. If, e.g. the line 
relaxation takes place in x-direction, then the fol- 
lowing typical system of equations is obtained 

Au, 

A. 2 

A v  I 

Av 2 

1 
Ax 

1 
0 

Ax 

1 
Ay 

1 
Ay 

1 
AI, Az 

1 
Aw2 - Azz 

AI 

u~ 

u(2.) 

v] ~> 

w~"~ 

w~2,~ 

p(n) 

l ~(n) 
A X  Y i -  I d,k 

l . ( n )  
A x F i +  ld,k 

0 

+ 
0 

0 

0 

A .(.) 2Yi+ 1 d,k 

L n(n-- 1) 
- -  Ay t . ' i , / -  1 ,k 

+ 1 .(n-O 
A yeij+ l,k 

- l p I j , ; ! )  , 

l ~ ( n -  1) 
Azl~id,k + 1 

0 

+ 

S~ 

B~. 

B~ 

= 0  
B~ 

Bw, 

Bw. 

S t  
J 

(14) 

with 

A1 = ((Ax):A,,) -1 + ((Ax)EA,) - '  + ((Ay)ZAv,) -~ 

+ ((Ay)ZAv2) -1 + ((Az)/A~,)-i + ((Az)ZAw) -1 

A2 = - ( ( axyA O - I  

Bu I 
B -  

AxAu~ 

Bu2 B~, Bv~ Bw~ Bw, 
_ - - - ~  ~ - - -  

AxA.  2 AyA~ 1 AyAv 2 AzAw~ AzAw2 " 

For the calculation of the line-relaxation in x-direc- 
tion a linear system of equations Au = b made up of 
submatrices like (14) has to be solved. If the solution 
vector is arranged linewise, then ul and u2 lie on the 
same point and we can get the vector of unknowns in 

- • i i • u ~ +  l ,  vi i+ 1 v ~ +  l ,  the form ( . . . .  u', v'l, v[, wl, w:, p', 
w~+l, w[+l, p~+l, d+2 . . . .  ). In this case, A is an upper 
triangular matrix and the system can be solved 
uniquely if tr A :~ 0. Because of the form of A this 
requires 
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A,i,Avi, Awi, Al :/:0 f o r / =  1,2. (15) 

In particular, the condition for A~ is satisfied if 

sign (Au) = sign (Av,) = sign (Aw). (16) 

The line-relaxation is carried out in alternating 
zebra-relaxation order, i.e. for constant z the lines 
with j even are calculated before those with j odd. A 
complete relaxation step on fie for the N-S-system 
consists of three single zebra relaxation steps for the 
three coordinate directions. The relaxation in direc- 
tion of the y- and the z-axis is carried out in a similar 
way as for the x-direction described above. 

A similar alternating zebra-relaxation method is 
used for the energy equation. The structure of the 
relaxation step is identical for the three spacial direc- 
tions. The linearized difference equation for the energy 
equation has the form 

A 1 T ~, +AoT~o ~ + A + ,  T~)I +~AkT~" ~ = 0 
k 

with 

Ai = ,q(T ~"- 1), u(n)) (17) 

where the subscripts - 1 ,  0, 1 denote grid points in 
relaxation direction and k defines all other points 
involved in the difference scheme. Collecting all 
difference equations in the line-relaxation interval a 
linear tridiagonal system (with main diagonal 
elements A0 and subdiagonal elements A i and A+ 1) 
is obtained, which is solved by a double-sweep 
method, see [12]. The tridiagonal system has a unique 
solution, if the corresponding matrix is strongly diag- 
onal dominant, i.e. if 

IAol > IA- , I+ IA+I I  (18) 

for each main diagonal element A0. Here the condition 
is guaranteed by appropriate weighting of the con- 
vective and diffusive terms. To get a convergent iter- 
ation method the unknowns U and T are updated by 
under-relaxation after each line-by-line relaxation, the 
optimum values for the under-relaxation parameters 
are found to decrease linearly from 1 to 0.1 for increas- 
ing Reynolds and Marangoni number from 100 up to 
50 000. 

For  the discretization of the momentum and energy 
equation we use a scheme based on that of Spalding 
[13] and which has been used in a similar form by 
Vanka [12], Thomson and Ferzinger [14] and Bruneau 
and Jouron [11]. The diffusion term in the momentum 
equations of (1) is approximated using the well-known 
three-point formula to get the discretization for 

u(63u/cqx)--Re-1632u/Ox 2 in (x+h/2) 

if u x +  < Reh 

// 3h'~(,- n // h~ (n-l) 

_ ) 

u (x -  ~)h\("-l) f / 
V +u?+77 

Re h2 

else, if u(x-}-ht(n-l)<o 

4utx+T)-5utx+3h' <"-'> / Y) +utx+ 
),( 

3h 

- ( l+r )  

× 

else 

Re h 2 
(19) 

x 

/e 3h'~(- - n 

-utx-y J 
3h 

- ( 1  - r )  

× 

Re h2 

with 

`n- ' ,  

The difference scheme for the other convection and 
diffusion terms of the N-S  equation and the energy 
equation are similar. It turns out that in both differ- 
ence equations the coefficients (15) are always posi- 
tive. Therefore, all main diagonal elements in (14) are 
positive, so that according to (16) a unique solution 
of the system exists. 

Near the boundaries the discretizations must be 
modified. If  the three-point stencil for the approxi- 
mation of a convective term crosses the boundary, it 
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is replaced by the well-known first-order forward or 
backward difference schemes. 

4. RESULTS 

4.1. Code validation 
In order to test our numerical code we first cal- 

culated the 2D thermocapiUary flow, i.e. the flow in 
the absence of  sidewalls. The calculations have been 
done for unit aspe,zt ratio (height/width of  the cavity) 
and various value~; of  Re and Ma. For  a typical M G  
run we have used equidistant grids of  32 x 32, 64 x 64, 
128 x 128 and 256 × 256 grid points (level 4 to level 
1). The flow and temperature field can be resolved 
by the 32 × 32 grid up to 2% of  the fully converged 
solution, except for the position and the magnitude of  
the peak of  the su:rface velocity u, which is a result of  
the large temperature gradient near the cold boundary 
at large Reynolds number. 

Highly accurate solutions of  this problem have been 
given by Zebib et al. [6] and Carpenter and Homsy 
[3]. Our results coiincide within a small difference with 
those given by Carpenter  and Homsy [3]. For  Pr = 1 
and Re = 1 0  4 they obtain, e.g. u(x = 0.5,y = 1) = 
2.96 × 10 -2, which, differs from our result (3.1 x 10 -2) 
only by - 3 % .  The same comparison at Pr = 10 and 
Re = 103 yields a difference of  2%. We consider this 
favorable comparison as a p roof  of  the correctness of  
our code and intelpret  the magnitude of  the difference 
between both res~Llts as an error estimate. 

4.2. The structure o f  the main vortex: a comparison 
between 2D and 3,0 results 

Given that the 2D solution on the 32 x 32 grid has 
nearly converged to the 'exact '  solution one can expect 
a 3D M G  solution on a 323-grid to have a comparable 
accuracy. Therefore, for all subsequent 3D cal- 
culations we have used a three-level M G  algorithm 
with grid sizes 8 :~, 163 and 323. For  all parameters 
considered the solution has proven to be symmetric 
with respect to tlae plane z = 0.5, even when using 

asymmetrically disturbed initial values. We conclude 
that no symmetry breaking is present as, for instance, 
in short Taylor--Couette annuli, see Barten et al. [15]. 

A quantitative comparison between the 3D 323- 
solution and the corresponding 2D 2562-solution for 
u and T a t  x = z = 0.5, y --- 1 and the minimum value 
of  v along y = z = 0.5 is made in Table 1. In the 2D 
case the differences between the values for u and V=n 
obtained on the 322 and the 2562 grid (given in par- 
entheses) are of  O(2%),  whereas the differences 
between the respective temperature fields are of  
0 (5  %). These deviations giving the magnitude of  the 
numerical error are not  uniform. Since the differences 
between the 2D and 3D calculations on the 322 and 
the 323 grid are of  the same order of  magnitude, the 
influence of  the sidewalls on u and T at the selected 
location x = 0.5 cannot be reliably determined. Their  
influence on Vmi n on the other hand is stronger. Vmi, 
(3D) is up tO 15% smaller than Vmin (2D), which clearly 
shows the expected retarding action of  the sidewalls 
in the fluid bulk. This damping effect is demonstrated 
in Fig. 2, where isotherms of  the 3D solution are 
shown in cross-sections at z = 0.1 (a) and z = 0.5 (b). 

It  is observed in qualitative agreement with Babu 
and Korpella [8] that the surface velocity u at x = 0.5 
is unexpectedly increased and that the surface tem- 
perature T is decreased in the 3D case as compared to 
the 2D one for M a  = 100 (Table 1). This Marangoni  
number is just in a range where convection is impor- 
tant but boundary layers have not yet developed. The 
convective effect generally leads to a reduced mag- 
nitude of  the driving temperature gradient over those 
parts of  the free surface (0 < x < 0.5) over which the 
fluid is accelerated towards the cold boundary. This 
is illustrated in Fig. 3, where the surface temperature 
is shown at z = 0.5 for Pr = 1 and different Reynolds 
numbers. The qualitative behavior is the same as for 
the 2D case [6]. The presence of  sidewalls on the 
temperature field reduces this effect and as a result the 
magnitude of  the temperature gradient in the accel- 
eration region will be closer to that of  the conducting 

Table 1. Vebcity u and temperature T on the free surface at x = z = 0.5, y = 1 and the minimum vertical 
velocity Vm~, taken along y = z = 0.5 

u x 102 T /)min X 102 
Re 2D 3D 2D 3D 2D 3D 

10 13.72 13.37 0.519 0.513 -2.26 - 1.99 
(14.00) (0.530) (-2.31) 

100 11.05 11.12 0.632 0.620 - 2.03 - 1.82 
(11.00) (0.655) (-2.04) 

1000 5.20 5.10 0.659 0.6'55 - 1.04 - 0.91 
(5.12) (0.688) ( - 1.02) 

5000 3.88 3.57 0.564 0.587 - 1.18 - 1.01 
(3.82) (0.598) ( -  1.20) 

10 000 3.15 3.01 0.576 0.567 - 1.19 - 1.00 
(3.08) (0.586) ( -  1 .19)  

50 000 1.92 1.76 0.599 0.590 - 0.84 - 0.75 
(1.85) (0.553) (-0.90) 

Values are: given for 2D (322) and 3D (323) steady flow for different Reynolds numbers Re and Pr = 1. The 
more accurate values obtained on the 256 x 256 grid are given in parentheses. 
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2. Isotherms of the 3D solution for Pr = 1 and 
Re = 5x 104 at z = 0.1 (a) andz = 0.5 (b). 

o 

d 

I 000 
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d- 
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X 

Fig. 3. Temperature T for Pr = 1 and different Reynolds 
numbers (see labels) as function of x at y = 1, z = 0.5. 

profile leading to an enhanced surface flow in the 3D 
case. 

The temperature close to the cold corner at 
x = y = 1 cannot be completely resolved with the pre- 
sent 323 grid due to the convective crowding of  iso- 
therms (cf. Fig. 2). Even though both the hot  and the 
cold corner are singular [6], the isotherms in the bulk 
are reliably calculated, which we proved by comparing 
the solutions obtained on the 2562 and the 322 grids 
of  the 2D calculations. The isotherms indicate that 
the circulation in the x - y  plane is getting weaker as 
the sidewalls z = 0,1 are approached. Note  that the 
thickness of  the thermal boundary layers at x = 0 and 
x = 1 increases towards these sidewalls. This will be 
important  to the understanding of  the secondary flow. 

4.3. Secondary  vort ices  

In the 3D thermocapillary driven cavity flow there 
appear a number of  secondary vortices which are 
driven by different mechanisms. An overview of the 
main vortical structures is given in Fig. 4. The main 
or primary vortex (I) is by far the strongest one and 
has been discussed above. Vortices (II) and (III) are 
the well-known corner vortices, which arise due to 
flow separation in the presence of  sharp rigid corners 
at x = 0, 1 and y = 0, cf. Moffatt  [16]. As the vortex 
(I) develops for increasing R e  to an inviscid core flow 
with approximately constant vorticity, these corner 
eddies can grow due to adverse pressure gradients 
along the vertical walls (Carpenter and Homsy [3]). 
They also appear in 2D thermocapillary flow [17], lid- 
driven cavity flow [18], and shear driven cavity flow 
[19]. As an example we show in Fig. 5 the velocity 
vectors projected onto the plane z = 0.5 for Pr  = 1, 

Re  = 5 x 10 4. The size of  the corner vortices is much 
smaller in the 3D than in the 2D flow, as a result of  
the retarding influence of  the side walls. 

Vortex (VI) and its symmetrically located counter- 
part have a thermocapillary origin. Since the velocity 
u vanishes when the vertical walls at z = 0, i are 
approached, the convective transport in x-direction at 
the free surface is reduced near z = 0, as compared to 
the midplane at z =0 .5 .  For  small Marangoni  
number,  however, convection leads to an increased 
slope c~xT < 0 at x = 0 as compared to M a  = 0 (creep- 
ing flow). Therefore, the gradient OxT(x = 0) is 
smaller close to the sidewalls at z = 0, 1 as com- 
pared to midplane z = 0.5 (for the absolute values we 
have [~xT(x ~ O, y = 1, z ~ 0)[ > [~xT(x ~ O, y = 1, 
z = 0.5)[). This leads to a surface temperature dis- 
tribution like that shown in Fig. 6(a). As a result 
thermocapillary forces directed toward the sidewalls 
are induced in z-direction and lead to well developed 
secondary vortices as shown in Fig. 7 (two upper 
vortices) in a cross-section at x = 0.5 for P r  = 1 and 
Re  = 100. Profiles of  the corresponding surface tem- 
perature and secondary surface velocity w at x = 0.5 
are shown in Figs. 8(a) and 9(a) for M a  = 100 and 
four different Prandtl  numbers. In the limit Pr  ~ ov 

with constant M a  equations (1-3) become inde- 
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Fig. 4. Schematic representation of the primary and secondary vortical structures shown in the three 

orthogonal coordinate planes. The roman numbers are refered to in the text. 
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X 

Fig. 5. Secondary vortices in the lower left and right corners in the plane z = 0.5, x = 0, 1 and y = 0 for 
3D flow. All arrows are scaled identically. 

penden t  of  Re and  the solut ion is determined by Ma 
alone. It  is seem f rom Figs. 8(a) and  9(a) tha t  this 
asymptot ic  regime is reached for Re < 10 ( ~  Pr > 10 
at  Ma = 100). 

A t  h igh M a r a n g o n i  numbers  the rmal  bounda ry  lay- 
ers develop at  x = 0 and  x = 1. The appearance  of  
the layer at  x = 9 (OxT(x = 0) is now decreasing for 
increasing Ma) has  the opposi te  effect on  the free 
surface tempera ture  d is t r ibut ion as compared  to the 

small Ma n u m b e r  case. While  close to the sidewalls 
the small  Ma n u m b e r  effect domina tes  (u --+ 0) shifting 
the free surface isotherms in positive x-direct ion 
downs t ream as z increases f rom 0 (z decreases f rom 
1), the i so therms at z = 0.5 are compressed towards  
the cold (x = 1) and the ho t  bounda ry  (x = 0). This  
results in a tempera ture  d is t r ibut ion  over  the free 
surface, a typical example of  which is shown in Fig. 
6(b). The result ing surface forces in the z-direction 
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Fig. 6. Typical isotherms on the free surface (y = 1) for 
Pr = 1, small Marangoni number Ma = 100 (a) and large 

Marangoni number Ma = 104 (b). 

are always directed toward the insulating sidewalls 
in direct vicinity o f  the sidewalls. In an intermediate 
distance these forces are directed towards the wall  
near the cold side (x = 1) but opposite,  i.e. towards 
the interior, near the hot  side (x = 0). This mechanism 
induces secondary vortices close to free surface that 
have to compete,  however,  with other secondary vor- 
tices induced by the bulk fluid mot ion  (see further 
below),  which have a surface f low that is always 
directed towards the sidewalls. This competi t ion is 
illustrated in Figs. 7 and 10 for P r  = 1 by showing 
cuts at x = 0.5. A t  small Re (Fig. 7) two secondary 
vortices are present due to the thermocapil lary effect 
corresponding to Fig. 6(a). At  increased R e  and M a  

the surface f low is directed towards the sidewalls in 
the vicinity o f  them while the surface f low is directed 
toward the center near z = 0.5 until, for higher Mar- 
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Fig. 7. Projection of velocity vectors onto the plane x = 0.5 
for Pr = 1 and Re = 100. 
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Fig. 8. Surface temperature T at x = 0.5 for Ma = 100 (a) 
and Ma = 104 (b) for different Pr as indicated by labels. 

angoni  numbers (Fig. 10), the surface f low is directed 
towards the middle z = 0.5 nearly everywhere on the 
free surface except for a diminishing corner area. The 
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Fig. 9. Surface velocity w at x = 0.5 for Ma = 100 (a) and 
Ma = 10 ~ (b) for different Pr as indicated by labels. 
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Fig. 10. Projection of the velocity vectors onto the plane 
x = 0.5 for Pr = 1 and Re = 50 000. 

fact that no visible vortices develop can be explained 
by counter-rotating vortices induced by the bulk 
mot ion (see further below). In Fig. 10 the competing 
forces get stronger and the thermocapillary induced 

vortex (clockwise in the upper left) close to the surface 
tends to separate from the counter-rotat ing bulk vor- 
tex (anti-clockwise in the middle left). Both vortices, 
however, are masked by the mean upflow in the upper 
half  of  the cavity at x = 0.5. Typical high Marangoni  
number profiles of  T and w at x = 0.5 and y = 1 for 
M a  = 104 are shown in Figs. 8(b) and 9(b). They differ 
from Figs. 8(a) and 9(a) in that the asymptotic regime 
is not  yet reached for Pr  = 50 ( ~  Re  = 200). 

The magnitude of  the thermocapillary induced sec- 
ondary flows (VI) relative to the main vortex flow (I) 
tends to zero as M a  ~ O. However,  it gets larger as 
M a  increases and reaches the order of  magnitude of  
25% at Pr  = 1 and R e  = 5 × 104. It  should be men- 
tioned that the above mechanism should also hold 
for the case of  partially or even totally conducting 
sidewalls. As the thermal side wall conductance gets 
larger, we expect a strongly enhanced surface flow 
towards the sidewalls, since the temperature gradients 
in z-direction will necessarily be larger if the tem- 
perature on the sidewalls is forced to equal the con- 
ducting profile. 

We now turn to the secondary vortices (VII) that 
are produced by the main vortex (I) in the vicinity of  
the sidewalls. For  high Reynolds number the main 
v o r t e x  (I) develops to a rigidly rotating core flow 
with nearly constant vorticity [6]. Such flows induce 
Ekman boundary layers (Greenspan [20]) on the side- 
walls at z = 0,1. Although this asymptotic parameter 
range has not  yet been reached by the present inves- 
tigation, the formation of  secondary vortices near the 
boundaries at z = 0,1 is observed for increasing Reyn- 
olds (not Marangoni!) number. These are identified 
as Ekman vortices. The flow within the corresponding 
sidewall boundary layers is directed towards the axis 
of  the main vortex, since the sidewalls are stationary. 
Here we observe the formation of  one Ekman [21] or  
Brdewaldt  [22, 23] vortex (VII) on each sidewall as 
the Reynolds number is increased. These vortices 
transport fluid from the sidewall Ekman layers, which 
are still comparatively thick, to the center of  the 
cavity. The corresponding vortices (VII) are clearly 
visible in the bot tom half  of  Fig. 10. A corresponding 
pair of  Ekman vortices can also be expected near the 
free surface. However,  thermocapillary forces on the 
free surface at x = 0.5 drive a mot ion opposite to the 
sense of  rotation of  the expected Ekman vortex if the 
Marangoni  number is large and, as a consequence, 
a distinct Ekman vortex cannot be seen there. The 
secondary vortices (VII) at the bot tom of  the cavity 
extend in a curved fashion along the sidewalls up the 
hot  and the cold boundaries. In Fig. 11 we show these 
vortices (IV, V) in horizontal cuts at y = 0.625. In the 
x - z  plane the centers of  the vortices (IV) at the cold 
side (x = 1) are located very close to the corners near 
the free surface (y ~ 1), while they are found in the 
interior near z = 0.5 close to the bot tom (y ,~ 0). The 
vortices (V) on the hot  side (x = 0) show the opposite 
behavior. This effect is due to the main vortex (I) 
which is responsible for a strong flow in positive x- 
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Fig. 11. Vortical structures in the plane y = 0.625 for Pr = 1 
and Re = 5 x 104 . 

direction in the upper part of  the cavity and for a flow 
in negative x-direction in the lower part of  it. This 
main flow is superposed to the Ekman vortices (IV, 
V, VII) seemingly shifting them toward or away from 
the heated walls depending on the sign of  u. 

5. CONCLUSIONS 

The steady 3D thermocapillary flow in an open 
cubic cavity has successfully been calculated up to 
Marangoni  numbers as large as M a  = 5 x 104. The 
employed F A S - F M G  algorithm has proven to be an 
efficient method for this purpose. A typical calculation 
took about  4 h on an IBM RS 6000/530 series work- 
station. A mesh of  323-grid points turned out to have 
an accuracy better than 5% (except for the peak vel- 
ocities near the cold corner) and thus being capable 
of  reliably compute secondary flow structures due to 
the presence of  sidewalls. These secondary flows have 
been explained in terms of  (a) additional ther- 
mocapillary actions perpendicular to the main ther- 
mocapillary driving force and (b) Ekman vortices on 
the sidewalls. Close to the free surface and depending 
on the x-position, Pr and Re number, both vortices 
can reinforce or annihilate each other. It was found 
that the secondary thermocapillary flows appeared 
due to an increase of  the Marangoni  number,  whereas 
the Ekman vortices being independent of  the tem- 
perature field appear due to increasing Reynolds num- 
ber. Within the range of  parameters investigated we 
have not  found any Taylor -G6r t le r  like vortices [24]. 

Though steady high Marangoni  number flow has 
been considered we have not investigated its stability 
to t ime-dependent perturbations. It  is well known that 
time-dependence can set in even in 2D driven cavity 
flow (see for instance Goodr ich  et al. [25]). Little is 
known, however, about  the onset of  time-dependence 
in thermocapillary cavities and about  the possibly sta- 

bilizing influence of  sidewalls. This question will be an 
interesting research subject for future investigations. 
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